1059 Prime Factors (25分)
Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p1k1×p2k2×⋯×pmkm.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range of long int.
Output Specification:
Factor N in the format N =
p1^
k1*
p2^
k2*
…*
pm^
km, where pi's are prime factors of N in increasing order, and the exponent ki is the number of pi -- hence when there is only one pi, ki is 1 and must NOT be printed out.
Sample Input:
97532468
Sample Output:
97532468=2^2*11*17*101*1291
解题思路:
这道题给我们一个int范围的整数n,按照从小到大的顺序输出其质因数分解的结果。这其实就是一道很普通的质因数分解板子题。我们先打好一个素数表,然后用一个结构体来保存质因子数。然后题目中说是int范围内的正整数进行质因子分解,因此我们的素数表大概开就可以了。
#include<iostream>
#include<math.h>
using namespace std;
struct factor {
int num;
int cnt;
}fac[10];
int prime[100010], pNum = 0;
int isPrime(int n) //判断是否是素数
{
if (n <= 1)
return 0;
for (int i = 2; i <= sqrt(n); i++)
{
if (n%i == 0)
return 0;
}
return 1;
}
void primeTable()
{
for (int i = 0; i < 100010; i++)
{
if (isPrime(i) == 1)
prime[pNum++] = i;
}
}
int main()
{
primeTable(); //先打好表
int n;
int count = 0; //记录质因子的个数
cin >> n;
if (n == 1) //注意特殊情况
cout << "1=1" << endl;
else {
cout << n << "=";
for (int i = 0;prime[i] <= sqrt(n); i++)
{
if (n%prime[i] == 0)
{
fac[count].num = prime[i];
fac[count].cnt = 0;
while (n%prime[i] == 0)
{
n /= prime[i];
fac[count].cnt++;
}
count++; //质因子个数加1
}
if (n == 1)
break; //及时退出
}
if (n != 1) //注意如果不能被根号n里的数整除,那么就一定有一个大于根号n的质因子
{
fac[count].num = n;
fac[count++].cnt = 1;
}
//输出结果
for (int i = 0; i < count; i++)
{
cout << fac[i].num;
if (fac[i].cnt > 1)
cout << "^" << fac[i].cnt;
if (i<count-1)
cout << "*";
}
}
return 0;
}